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Abstract

A model describing the microscopic isothermal flow inside a fiber bundle completely surrounded by a resin during a
liquid molding process is developed. A distinguishing feature of this model is that it takes into account the liquid/vapor
phase transition occurring in the gas entrapped inside the tow. In contrast to the existing void formation models which
assume that the entrapped gas behaves as an ideal gas, in the present analysis, the condensation and vaporization processes
inherent in the liquid/vapor system under high external pressures are simulated by using the Peng–Robinson equation of
state. The numerical results show that the phase transition inside the fiber tow has strong effect on both the void dynamics
and its size, thus indicating the need to account for this phenomenon in simulation of liquid composite molding processes.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Void formation; Intra-tow flow; Peng–Robinson equation; Resin transfer molding; Porous medium
1. Introduction

Liquid composite molding (LCM) processes such as the resin transfer molding (RTM) and its variants are
routinely used for the production of net-shape structural polymer composite materials. During infusion of a
reactive polymeric resin permeating a dry fiber preform inside a complex mold cavity, the macroscopic resin
flow through the fiber preform and inter-tow gaps is simultaneously accompanied by the microscopic impreg-
nation of individual fiber bundles (tows), made up of 102–103 individual fibers, as shown in Fig. 1. Though the
manufacturing process is generally considered to be successful in the absence of large dry-spot regions, the
accompanying infusion through the individual fiber bundles can lead to appearance of un-wetted fibers, poten-
tially causing voids. The void formation can occur on the length scales of both individual fibers and fiber
bundles. The process induced voids, if not removed, become a part of the composite structure and adversely
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Fig. 1. A schematic of the gas entrapment mechanism in fiber bundles.
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impact on the mechanical and service properties of the processed composite. Most of the models available in
the literature (Mohan et al., 1999; Ngo et al., 1998; Bruschke and Advani, 1990; Lin et al., 1993; Trouchu
et al., 1993) simulate the macroscopic flow through a fibrous porous media, using Darcy’s law. Although these
models have been successfully used for predicting the macroscopic flow characteristics, understanding of the
physical phenomena associated with the accompanying flow infusion inside fiber bundles and its interaction
with the surrounding macroscopic flow will provide further insight into mechanisms and behavior governing
the void formation. The quantitative simulation and prediction of the void formation are important for proper
design and selection of material and processing parameters to minimize such voids in the composite materials.

Several models have been developed for simulation of void formation in RTM (Parnas and Phelan, 1991;
Pillai and Advani, 1998; Wood and Bader, 1994; Lundstrom, 1997). Parnas and Phelan (1991) explained the
air entrapment inside fiber tows as a result of the difference in the permeabilities of the intra-tow and inter-tow
regions. Because the interstitial space inside a fiber bundle is much smaller than the space between bundles
themselves, the flow front is able to reach the downstream sides of the tow before the gas inside the tow
can be forced out by the resin impregnation process. This delayed impregnation is incorporated into the
governing macroscopic flow equations by adding a so-called ‘‘sink’’ term to the continuity equation. In Parnas
and Phelan (1991), it is assumed that the air entrapped inside the tow follows the ideal gas law. As a result, the
pressure inside the air ‘‘bubble’’ rapidly increases as the microscopic resin front moves into the tow from the
perimeter and eventually becomes equal to the exterior pressure. Hence, the pressure balance is achieved at a
non-zero value of the void volume at which the local pressure gradient is equal to zero. The zero pressure gra-
dient does not permit further flow inside the tow, thus leaving the entrapped air as a void.

A similar model using the ‘‘sink’’ term in the continuity equation is studied in Pillai and Advani (1998). As
pointed out in this paper, the use of the ideal gas law for air entrapped inside a fiber tow significantly reduces
the liquid absorption by the tow, leading to a qualitatively different inlet pressure behavior as compared with
that observed in the experiments. To overcome this problem, the ‘‘sink’’ term in Pillai and Advani (1998) is
assumed to be either a constant or a step function, i.e., the sink absorbs liquid from the inter-tow region
for a limited period of time until it becomes fully saturated. Although this on/off type constant sink provides
better agreement with the experimental data, the physical flow phenomena that take place at the microscopic
level have not been identified and explained, leading to ambiguity in determining the time taken to fill the
intra-tow region, which is one of the major parameters used in the model presented in Pillai and Advani
(1998).
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Another class of models describing the void dynamics during RTM has been developed in Wood and Bader
(1994) and Lundstrom (1997). These models are based on the mass diffusion theory and predict the growth
and collapse of pre-existing gas bubbles during the process cycle. In these papers, the applicability of the dif-
fusion theory is investigated, and the required input parameters for the diffusion models were measured exper-
imentally. As follows from these studies, the void radius decreases at relatively slow rate, and the void
disappears in the order of minutes due to the diffusion. One of the main assumptions used in these models
is that voids are very small and have a spherical shape which is comparable with the fiber radius. As a result,
the characteristic time scale for the diffusion can be estimated as follows:
r2
f

D
� ð5� 10�6Þ2 m2

10�12 m2=s
¼ 25 s;
where D is the diffusion coefficient of the resin. However, for the tow impregnation process, the initial void
radius is of the order of the tow radius, and the time required for the void to dissolve becomes
r2
t

D
� ð10�4Þ2 m2

10�12 m2=s
¼ 104 s;
which could be longer than the molding process itself. The above consideration indicates that the diffusion
model is applicable for predicting the final stage of the void formation process, and cannot be used to describe
the initial void dynamics.

In contrast to the models presented above, we propose a model that takes into account the phase transition
occurring in the multi-component gas mixture entrapped inside fiber bundles during RTM. In the present
analysis, the behavior of the multiphase mixture inside a fiber bundle is described by the Peng–Robinson equa-
tion of state. Because the phase transition occurs on the time scale of less than one second, the present model
predicts the initial void formation and dynamics. Similar to the model developed by Parnas et al. the void
dynamics in the present work is determined by the pressure gradient at the interface between the gases
entrapped inside a fiber bundle and the surrounding resin. As the void size decreases, the pressure gradient
decreases becoming eventually equal to zero. When the pressure gradient inside the tow vanishes, the diffusion
becomes a dominant process that determines the void size dynamics. Note that because of the 2–3 orders of
magnitude difference in the temporal scales associated with the phase transition and molecular diffusion, these
two processes can be simulated in a decoupled manner, and the void size predicted by our model can be used
as an initial condition for the diffusion-based models developed in Wood and Bader (1994) and Lundstrom
(1997). The numerical results have shown that the phase transition inside fiber tows has strong influence on
both the void size and pressure, thus indicating the need to account for this phenomenon in simulation of
LCM processes.
2. Model for void formation in LCM

The above discussions clearly indicate that a more accurate modeling and a deeper physical understanding
of the flow behavior inside fiber bundles are needed. The main objective of this paper is to develop a model for
the intra-tow flow through a fiber bundle that accounts for not only the macroscopic pressure field around the
tow and the surface tension effects, but also a very important physical process associated with the gas–liquid
phase transition. This phenomenon should be taken into account to quantitatively predict the intra-tow flow
dynamics. Note that the vapor–liquid phase transition has not been considered in the models developed
previously (Parnas and Phelan, 1991; Pillai and Advani, 1998; Wood and Bader, 1994; Lundstrom, 1997).

The void formation mechanism studied in the present work is similar to one proposed in Parnas and Phelan
(1991). The main idea of this model is based on the observation that the permeability coefficient of a preform,
associated with the macro-flow between tows, is much greater than that of a fiber bundle, associated with the
micro-flow inside the tow. Therefore, as the advancing macroscopic resin flow front encounters a fiber bundle,
it flows around the tow, entrapping a pocket of gas that we will call a bubble. A schematic of this process is
shown in Fig. 1. After the macro-front surrounds and bypasses the bundle, the fiber tow is slowly impregnated
with the fluid. Because the fiber radius rf is about two orders of magnitude less than the tow radius rt, the
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microscopic flow inside the fiber bundle consisting of 102–103 individual fibers can be treated as a flow in a
porous medium. Without including the thermal and cure effects, the intra-tow flow can be described by the
conservation of mass equation and the Darcy’s law for momentum balance:
r � V ¼ 0; ð1Þ

V ¼ �K

l
rP ; ð2Þ
where V is the Darcian volume-averaged velocity vector of the fluid inside the bundle, K is the permeability
tensor of the fiber bundle, l and P are the fluid viscosity and pressure, respectively.

Assuming that the tow is a cylinder, and the microscopic flow is cylindrically symmetrical, only the diagonal
terms Kxx and Krr of the permeability tensor are non-zero. Under these assumptions, the system of Eqs. (1)
and (2) can be rewritten in the cylindrical coordinates (r,x) as follows:
u ¼ �Kxx

l
oP
ox
; ð3Þ

v ¼ �Krr

l
oP
or
; ð4Þ

ou
ox
þ 1

r
oðrvÞ
or
¼ 0; ð5Þ
where r and x are the radial and axial coordinates, as shown in Fig. 2. Substituting Eqs. (3) and (4) into Eq. (5)
yields an elliptic equation for pressure
Kxx
o2P
ox2
þ Krr

r
o

or
r
oP
or

� �
¼ 0: ð6Þ
The following boundary conditions for pressure are imposed:
P jCt
¼ P1ðt; x; rÞ;

P jCb
¼ P gðV bÞ � P r; ð7Þ
where Ct and Cb(t) are the tow and gas bubble surfaces, respectively, P1(t,x, r) is the external pressure distri-
bution around the tow, which can be obtained by solving the macroscopic flow in the inter-tow region, Pg(Vb)
is the pressure inside the gas bubble, which is a function of the bubble volume Vb, and Pr is pressure change
because of the capillary effects. As shown in Pillai and Advani (1996), the capillary pressure for porous
medium can be evaluated as follows:
P r ¼
4cef cos h

d f

; ð8Þ
Fig. 2. Schematic of the physical intra-tow flow in a single fiber bundle.
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where df is the diameter of an individual fiber, ef is the fiber volume fraction, h is the contact angle, c is the
coefficient of surface tension. To close Eqs. (6) and (7), an equation of state for the gas entrapped inside
the tow is required. The equation of state used in the present analysis is described in the next section.

The propagation of the resin front inside the fiber tow is a time-dependent problem. Because the vapor/
resin interface location varies in time, Eqs. (6) and (7) should be solved as a moving boundary problem.
To further simplify the problem, the following assumptions can be made: (1) Kxx/L2 is much less than
Krr=r2

t , where L and rt are the tow length and radius, respectively; (2) the tow characteristic size is much smal-
ler that the length scale on which the significant pressure changes occur in the inter-tow region; (3) the gas
bubble entrapped inside the tow does not move with the macroscopic resin flow and always remains inside
the tow, (4) the characteristic time scale of the vapor–liquid phase transition is much less than the tow impreg-
nation time. Under the above assumptions, Eqs. (6) and (7) are simplified to
Krr

r
o

or
r
oP
or

� �
¼ 0; ð9Þ

P jr¼rbðtÞ ¼ P gðrbÞ � P r; P jr¼rt
¼ P1ðtÞ; ð10Þ
where Krr is the permeability coefficient in the radial direction, Pg is a function of the bubble radius, and P1 is
a constant in space. The system of coordinates for the intra-tow flow perpendicular to the tow is shown in
Fig. 3.

The radial permeability coefficient in Eq. (9), which depends on both the fiber packing and the fiber diam-
eter, is evaluated by using the Kozeny–Carman equation (see, e.g., Kaviany, 1995)
Krr ¼
d2

f ð1� efÞ3

36Cke2
f

;

where ef is the fiber volume fraction, df is the fiber diameter, and Ck is the Kozeny constant. The Kozeny coef-
ficient for the flow perpendicular to fibers is set to be 11 as recommended in Lam and Kardos (1991). Assum-
ing that fibers in the tow are hexagonally packed cylinders as shown in Fig. 4, the fiber volume fraction can be
evaluated as follows:
ef ¼ 1� p

2
ffiffiffi
3
p

1þ d
df

� � ;

where d is the average distance between fibers inside the tow.

Eqs. (9) and (10) can readily be integrated to give the pressure distribution in the intra-tow resin flow
region:
P ðt; rÞ ¼ c1ðtÞ ln r þ c2ðtÞ; ð11Þ

where the ‘‘constants’’ c1 and c2 are found from the boundary conditions (10):
Fig. 3. The system of coordinates for the intra-tow flow perpendicular to the tow.
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c1 ln rt þ c2 ¼ P1ðtÞ;
c1 ln rbðtÞ þ c2 ¼ P gðrbÞ � P r:

�
ð12Þ
Eqs. (3)–(5) are valid not only in the microscopic resin flow, but also at the interface between the resin and the
gas bubble. Hence, the same set of equations can be used to determine the bubble radius dynamics.

To find a relation between the gas bubble radius and the resin front velocity, let us estimate the rate of
change of the entrapped gas volume Vb. On one hand, taking into account that the tow porosity is uniform,
one can write
dV b

dt
¼ e

dV t

dt
¼ 2eprb

drb

dt
; ð13Þ
where e is the tow porosity, Vt is the total volume of the gas bubble including the volume of both fibers and
gaps between them. On the other hand, the same quantity can be evaluated by using the Darcian resin front
velocity v as follows:
dV b

dt
¼ Stv ¼ 2prbv; ð14Þ
where St is the total area of the gas bubble surface. The above equation has been derived using the fact that the
Darcy velocity v is obtained by averaging the resin velocity over the total cross-section area including the area
of pores and fibers. Setting Eqs. (13) and (14) equal to each other, the following equation for the gas bubble
radius rb(t) can be obtained:
drb

dt
¼ v

e
; ð15Þ
where v is the fluid radial velocity component at the resin/gas interface inside the tow.
Substituting Eq. (4) into Eq. (15), calculating the radial pressure gradient component from Eqs. (11) and

(12), and evaluating all the equations at r = rb(t), the following equation for the gas bubble radius can be
derived:
dr
dt
¼ �Krr

el
P1ðtÞ þ P r � P gðrÞ

r ln rt

r

� 	 : ð16Þ
Eq. (16) describes the gas bubble dynamics, which strongly depends not only on the pressure field outside
the fiber bundle and the capillary effects, but also on the behavior of gas inside the bubble. If the sum of the
exterior and capillary pressures exceeds the pressure inside the bubble, resin penetrates inside the fiber bundle,
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thus removing the fluid from the advancing macroscopic flow into the tow. As the fluid impregnates the tow,
the gas bubble radius reduces reaching its steady-state value when the pressure inside the gas bubble comes
into equilibrium with the pressure outside the fiber bundle and the capillary pressure. If the steady-state
gas bubble radius is non-zero, it indicates the potential for void formation.

In closed mold cavities, it is likely that gas entrapped inside voids consists of air, water vapor, and resin
vapor. The thermodynamic behavior of this multi-component mixture is required to determine the Pg(r) term
in Eq. (16). In this work, the void formation and the intra-tow flow behavior are analyzed based on the Peng–
Robinson equation of state which takes into account the vapor–liquid transition in the multi-component mix-
ture. The detailed description of this equation of state is presented next.
3. The Peng–Robinson equation of state

In contrast to the existing void formation models which assume that the gas entrapped inside fiber tows
behaves as a perfect gas, the new model takes into account the liquid–vapor transition processes that occur
in the multi-component gas mixture under high pressures. In the present analysis, only the main components
of the gas mixture, such as resin and water vapors, are considered. If the pressure exceeds the dew pressure of
the mixture, then the resin vapor inside the void starts to condense into the fluid, lowering the gas pressure in
the bubble. As a result, the void radius decreases, thus increasing the gas pressure in the void. To take into
account this complicated physical phenomenon associated with the gas–liquid phase transition, an equa-
tion-of-state method is used. Assuming that for all the components, the liquid and gas phases stand in local
thermodynamic equilibrium at each moment of time, an algebraic relationship between pressure, volume, and
temperature can be obtained by adjusting the coefficients in this equation to ensure good fits with experimental
data. With the equation of state, one can determine the density of each component for given pressures, tem-
peratures, and compositions. In addition, the fugacity of each component in the mixture can be determined
from the equation of state, which provides a basis for imposing the Gibbs constraints to calculate the compo-
sitions and overall mole fractions of each coexisting component.

There are several equations of state available in the literature, which can be used for gas–liquid systems
(Sandler, 1999). In the present study, we use the Peng–Robinson equation of state (Peng and Robinson,
1976) to describe the behavior of multiphase mixtures at high pressures (0.5–3 MPa) and relatively low tem-
peratures (300–350 K). This equation of state can be written in the following form:
P ¼ RT
t� b

� aðT Þ
tðtþ bÞ þ bðt� bÞ ; ð17Þ
where t is the molar volume, T is the temperature (K), R = 8.314 J mol�1 K�1 is the universal gas constant,
a(T) and b are empirical parameters chosen to guarantee that the equation satisfies the critical-point proper-
ties. Eq. (17) can be rewritten in the form of a cubic polynomial
Z3 � ð1� BÞZ2 þ ðA� 3B2 � 2BÞZ � ðAB� B2 � B3Þ ¼ 0; ð18Þ
where
A ¼ aðT ÞP
R2T 2

; B ¼ bP
RT

; Z ¼ Pt
RT

:

The compressibility factor Z measures the deviation of the mixture from ideal behavior. For a pure com-
ponent, the parameters a and b are defined as follows:
aðT Þ ¼ 0:45724
R2T 2

c

P c

1þ ð0:37464þ 1:54226x� 0:26992x2Þ 1�
ffiffiffiffiffi
T
T c

r� �
 �2

; ð19Þ

b ¼ 0:07780
RT c

P c

; ð20Þ
where Pc and Tc are the critical pressure and temperature, respectively, and x is acentric factor.
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The same Eqs. (17) and (18) are valid for a mixture of several components. However, in this case, the coef-
ficients a and b are calculated by using mixing rules which represent these coefficients in terms of composition
and pure component parameters. In this work, the van der Waals mixing rules are used to determine the
parameters a and b of the mixture:
a ¼
XN

i¼1

XN

j¼1

xixjð1� kijÞ
ffiffiffiffiffiffiffiffi
aiaj
p

; ð21Þ

b ¼
XN

i¼1

xibi; ð22Þ
where ai and bi are the parameters for a pure component i defined by Eqs. (19) and (20) using the critical
parameters Pc, Tc and x for the component i, N is the number of components in the mixture, kij is the binary
interaction parameter which is introduced to obtain better agreement with experimental data.

To determine the compressibility factors of each existing phase, the cubic equation (18) should be solved,
which yields one or three roots, depending on the number of phases in the system. In the two-phase region, the
largest root corresponds to the compressibility factor of the vapor whereas the smallest root corresponds to
that of the liquid. The vapor–liquid equilibrium of the multi-component mixture is calculated by using the
Gibbs equal-fugacity constraint for each component. The fugacity coefficient of component k calculated using
the Peng–Robinson equation of state is given by
ln
fk

xkP
¼ bk

b
ðZ � 1Þ � lnðZ � BÞ � A

2
ffiffiffi
2
p

B

2
PN

i¼1xið1� kikÞ
ffiffiffiffiffiffiffiffi
aiak
p

a
� bk

b

 !
ln

Z þ 1þ
ffiffiffi
2
p� 	

B

Z þ 1�
ffiffiffi
2
p� 	

B

 !
; ð23Þ
where fk is the fugacity coefficient of component k. Using the Gibbs equal-fugacity constraints
f v
k ¼ f l

k ; ð24Þ

the compositions of each phase in the mixture can be determined. The superscripts ‘‘v’’ and ‘‘l’’ denote the
vapor and liquid phases, respectively. Eqs. (24) are highly nonlinear and should be solved by some approxi-
mate iterative technique, e.g., the Newton’s method. To reduce the computational expenses associated with the
coupled solution of the flow equation (16) and the vapor–liquid equilibrium constraints (24), a family of equi-
librium states at various saturation pressures has been calculated beforehand by using the Peng–Robinson
equation of state for the given mixture. During the integration of Eq. (16), the relation between the void
pressure and its volume is obtained by interpolating between the equilibrium states calculated for this
multi-component mixture. This approach allows us to reduce significantly the computational time while
maintaining high accuracy of the numerical solution.

4. Results and discussion

The governing Eq. (16) is integrated in time by using a low-storage, explicit fourth-order Runge–Kutta
method developed in Kennedy et al. (2000). The simulations are all run at the maximum stable time step.
The Runge–Kutta scheme has an error estimator that monitors the temporal error per time step. For all
the simulations presented, the temporal error based on the L1 norm of the radius variable was less than
10�8. To validate the code, we compared the steady-state radius obtained numerically with its exact value
calculated analytically. Actually, the exact void radius can be calculated from Eq. (16). When the system
reaches its steady-state regime, the left hand side in Eq. (16) becomes equal to zero, thus resulting in the
following nonlinear equation for the void radius:
P1 þ P r � P gðrÞ ¼ 0: ð25Þ

Taking into account the fact that the first two terms in Eq. (25) do not depend on the void radius, the above
equation can readily be solved either analytically in the case of the equation of state for a perfect gas or by
using the Newton’s method if Pg(r) is given by the Peng–Robinson equation of state. The error obtained using
the equation of state for a perfect gas at different exterior pressures is shown in Table 1. As one can see from



Table 1
Error in the steady-state void radius obtained using the equation of state for a perfect gas for different external pressures

External pressure P1 (MPa) Steady-state radius, r
rt

Error, r�rex

rex

��� ���
2.0 0.22258 8.28 · 10�10

1.0 0.31333 1.78 · 10�9

0.5 0.43913 3.48 · 10�9
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the results presented in Table 1, the numerical error is of the order of machine zero for all the test cases con-
sidered. Similar behavior remains valid for the Peng–Robinson equation of state.

The advancing macroscopic resin front penetrates inside a fiber bundle, while it flows around the tow. As a
result, the initial bubble radius is actually smaller than that of the tow. In all simulations presented here, the
initial radius is taken to be 99% of the tow radius. To determine the effect of the vapor–liquid phase transition
on the void formation dynamics, the void radius and pressure are compared with those obtained using the
equation of state for a perfect gas.

The composition and overall mole fractions of each co-existing phase in real resin mixtures are not readily
available and should be measured experimentally. Furthermore, the critical pressures, critical temperatures,
acentric factors, and binary interaction parameters of resin systems used in LCM processes should be deter-
mined to use the Peng–Robinson equation of state. In the present study, we assume that the thermodynamic
properties of the resin vapor are similar to those of propylene (C3H6). Because of the presence of moisture in
both resin and air, it is also natural to assume that multi-component gas mixture entrapped inside voids could
contain water vapor. Therefore, we consider the time-dependent behavior and collapse of voids for the follow-
ing three systems: (1) resin and air, (2) liquid resin and its vapor, and (3) a binary mixture of resin, water, and
their vapors. The critical parameters for water and propylene are given in Table 2. In the case of the binary
mixture, the initial molar fraction of the resin vapor has been chosen to be 95%. For all the test cases consid-
ered, the resin temperature is assumed to be constant and equals 310 K. In the case of pure air, the phase tran-
sition does not occur, and the gas behavior is described by using the equation of state for a perfect gas. Several
important factors that would influence the LCM processing conditions are considered, and correlations to the
observations in real liquid composite molding processes are discussed below.

4.1. Effect of external pressure

As has been observed in liquid composite molding processes, the concentration of voids is higher near the
vent and low pressure regions inside complex mold cavities. Even in simple quasi-one-dimensional flow con-
figurations, the size of voids as observed using micrographs are larger near the far end from the injection inlet.
To check whether or not the new model can predict this behavior, the effect of external pressure on the tran-
sient evolution and collapse of voids inside fiber bundles is considered. The intra-tow flow under various exter-
nal pressure conditions is solved by using the present model to simulate the macroscopic pressure variation
across different regions in a complex mold geometry. Time histories of the non-dimensional void radius
obtained under exterior pressure conditions of 0.5 and 2 MPa are shown in Fig. 5. The exterior pressure,
P1 = 2 MPa, simulates a region near the injection port, whereas P1 = 0.5 MPa corresponds to a region
located closer to the vent. The initial gas pressure is taken to be normal atmospheric pressure of 0.1 MPa.
For all the equations of state considered, the steady-state void radius decreases if the external pressure
increases. The transient time to reach the steady-state regime also becomes smaller as the pressure around
the tow increases. This is consistent with observations in liquid composite molding processes, which indicate
Table 2
The critical pressure, critical temperature, and acentric factor for water and propylene

Pc (MPa) Tc (K) x

Water 22.12 647.3 0.344
Propylene 4.613 364.8 0.142
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that the void concentration and sizes are significantly smaller in those regions of a composite part where higher
flow pressures are experienced during the process.

It should be emphasized that the liquid–vapor phase transition has a very strong effect on the void radius
dynamics, as seen in Fig. 5. In contrast to the ideal gas case, the condensation and vaporization processes
inherent in the resin vapor and water/resin binary mixture systems drastically change the gas behavior if
the void pressure exceeds its saturation value. As the void radius decreases, the pressure inside the gas bubble
increases and reaches the dew point of the resin vapor. It leads to the formation of liquid resin, thus lowering
the gas pressure inside the bubble. As a result, the void radius reduces, causing the gas pressure inside the
bubble to increase, thus initiating the vapor/liquid phase transition process again. The liquid resin formation
continues until the entire resin vapor condensates into liquid resin surrounding the void. In the consequence of
this, the void dissolves completely if, initially, it consists of only pure resin vapor, and there is no moisture in
the system. However, as seen in Fig. 5, if the gas entrapped inside the void initially contains the mixture of
resin and water vapors, the steady-state void radius is much smaller than that of the ideal gas model, but
not equal to zero, because of the presence of water and its vapor inside the void. Similar to the ideal gas case,
the void formation time in the pure resin vapor and binary mixture cases reduces as the exterior pressure
becomes larger.

The pressure built-up inside the gas bubble correlates to the void radius dynamics considered above. When
the sum of the external and capillary pressures is equal to or less than the internal pressure inside the bubble,
the resin front velocity becomes zero, and further flow inside the tow is not possible. Fig. 6 shows the transient
behavior of the pressure inside the void, which corresponds to the time history of the void radius depicted in
Fig. 5. Note that the plot for the pure vapor case in Fig. 6 has two kinks. The first kink that occurs approx-
imately at 4.4 ms corresponds to the beginning of the phase transition. The second kink at 7.2 ms indicates the
end of the vapor condensation process. At this moment, there is no resin vapor left inside the bubble. As a
result, the system behaves as an incompressible fluid, causing the rapid increase in the pressure. Comparing
Figs. 5 and 6, one can see that as soon as the pressure gradient at the gas/liquid interface vanishes, the
intra-tow flow ceases to exist, and the void radius reaches its minimum value.

4.2. Effect of resin viscosity

The resin viscosity has the strong effect on the flow velocity and the infusion time during LCM processes.
Usually, resin systems are heated to reduce the viscosity and to improve the impregnation process. To evaluate
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Fig. 6. Time histories of the void pressure obtained using the perfect gas, pure vapor, and binary mixture models at the external pressures
of 0.5 and 2 MPa.
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the effect of the resin viscosity on the void radius dynamics described by the present model, the intra-tow flow
at different resin viscosities is considered. Fig. 7 shows time histories of the void radius obtained using three
resin viscosity values (0.1 kg/ms, 0.09 kg/ms, and 0.11 kg/ms) for both the perfect gas and binary mixture
models at the external pressure of 2 MPa. As one can see in Fig. 7, for each equation of state used, the
steady-state void radius remains unchanged for all the resin viscosities considered. However, the void forma-
tion time in both cases becomes smaller as the resin viscosity decreases. This effect can also be seen in Fig. 8
which shows time histories of the void pressure obtained under the same conditions. As the resin viscosity
increases, the microscopic front velocity decreases, thus resulting in a slower pressure build-up inside the void
as compared with those corresponding to the lower viscosity values. Another conclusion that can be drawn
form this comparison is a significant difference in the pressure behaviors obtained with the perfect gas and
binary mixture models. The presence of water in the system significantly reduces the saturation pressure of
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Fig. 7. Effect of the resin viscosity on the void radius obtained using the perfect gas and binary mixture models.
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Fig. 8. Effect of the resin viscosity on the void pressure obtained using the perfect gas and binary mixture models.
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the binary mixture, which is slightly higher than the normal atmospheric pressure. As a result, the phase tran-
sition starts practically at the beginning of the tow impregnation process, thus considerably lowering the pres-
sure inside the void as compared with that in the perfect gas case. When the entire resin and water vapors have
condensed, the void pressure rapidly increases, because the water remaining inside the void is practically
incompressible. The jump in the binary mixture pressure values in Fig. 8 indicates the end of the phase tran-
sition process.

4.3. Effect of tow radius

As follows from Eq. (16), the characteristic time scale associated with the microscopic flow is of the order of
tc ¼ lr2

t e
KrrP 0

, where rt is the tow radius, e is the tow porosity, and P0 is the gas pressure at the initial moment of
time. The above formula shows that the characteristic void formation time is quadratic in the tow radius if the
fiber radius and the intra-tow fiber volume fraction remain unchanged. To check whether or not the time
taken to reach the equilibrium is a quadratic function of the tow radius, the void formation time obtained
numerically by using the equations of state for both the perfect gas and binary mixture models are presented
in Table 3. As expected, the void formation time calculated numerically perfectly follows the theoretically
predicted quadratic law. Three cases corresponding to different tow radii of 1 mm, 0.5 mm, and 1.5 mm at
the same external flow pressure of 2.0 MPa are considered to analyze the effect of the tow radius on the void
formation time. Fig. 9 shows that for each equation of state, the non-dimensional steady-state void radius is
the same for all the tow radii considered. Note, however, that as rt decreases, the actual physical size of the
void decreases proportionally to the tow radius. Similar behavior is observed for the gas pressure inside the
void, which is shown in Fig. 10. Note that in the case of the binary mixture, the time for which the void
pressure reaches its equilibrium value is about two times less than that of the perfect gas. The main reason
for such a behavior is that the time the water and resin vapors take to completely condense is much less than
the time it takes for the pressure of a perfect gas inside the void to reach the equilibrium with the exterior and
capillary pressures.
Table 3
The void formation time obtained at different tow radii

rt1 = 0.05 mm rt2 = 0.1 mm rt3 = 0.15 mm tc2/tc1 tc3/tc1

Perfect gas 2.426 ms 9.702 ms 21.830 ms 4 9
Binary mixture 1.049 ms 4.195 ms 9.439 ms 4 9
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Fig. 10. Effect of the tow size on the void pressure obtained using the perfect gas and binary mixture models.
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Fig. 9. Effect of the tow size on the void radius dynamics obtained using the perfect gas and binary mixture models.
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4.4. Effect of the intra-tow fiber volume fraction

It is well known that the permeability coefficient strongly depends on the pore volume fraction of the por-
ous medium in question. In the present analysis, the fiber bundle is considered as a porous medium, and its
permeability coefficient Krr is evaluated by using the Kozeny–Carmen formula, which is an essentially nonlin-
ear function of the fiber volume fraction. To study the effect of the fiber volume fraction on void radius
dynamics, three intra-tow fiber volume fraction values (0.4, 0.58 and 0.8) for a given tow radius are consid-
ered. Time histories of the void radius obtained using the equations of state for the binary mixture and a per-
fect gas are shown in Fig. 11. It should be noted that the void radius converges to the same value for all three
intra-tow fiber volume fractions considered. This result is not surprising, because when the solution
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Fig. 11. Effect of the intra-tow fiber volume fraction on the void radius obtained using the perfect gas and binary mixture models.
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approaches the steady-state regime, the left hand side of Eq. (16) vanishes, thus nullifying the pressure gradi-
ent on the right hand side of the equation. Because in this case, the permeability coefficient in front of the
pressure gradient term can be canceled, and the capillary pressure is negligibly small, the steady-state solution
depends on neither Krr nor the fiber volume fraction, which can clearly be seen in Fig. 11. Another observation
is that the time taken to reach the equilibrium becomes significantly larger, as the fiber volume fraction
increases. The reason for such a behavior is that the intra-tow permeability coefficient becomes smaller for
larger values of the fiber volume fraction, thus reducing the front velocity, which results in a slower propaga-
tion of the microscopic resin front inside the tow. Time histories of the pressure inside the void are shown in
Fig. 12. Similar to the void radius dynamics presented in Fig. 11, the steady-state value of the void pressure is
independent of the fiber volume fraction, whereas the void formation time increases by two orders of magni-
tude as the fiber volume fraction increases from 0.4 to 0.8.
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5. Conclusions

The model describing the microscopic isothermal flow perpendicular to a fiber tow under a high external
fluid pressure, which takes into account the phase transition phenomenon occurring in gas entrapped inside
the tow, has been developed and implemented. The time-dependent intra-tow impregnation process is consid-
ered for the following three liquid/gas systems: (1) resin and pure air, (2) resin and pure resin vapor, and (3)
the binary mixture of the resin–water system and their vapors. In the first case, the air entrapped inside the tow
is described by the equation of state for a perfect gas. To simulate the vapor–liquid phase transition inherent in
the multiphase systems, the Peng–Robinson equation of state is used. In the test simulations presented, the
thermodynamic properties of the resin are assumed to be similar to those of propylene. Parametric studies
have been conducted to analyze the effects of exterior pressure, resin viscosity, tow radius, and fiber volume
fraction. As expected, for all the cases considered, the condensation of the resin and water vapors, which
occurs during the microscopic impregnation process, considerably reduces the steady-state void size as com-
pared with that of the perfect gas. Another important conclusion that has been drawn from this study is that
the void formation time is much smaller if the real gas effects are taken into account. As follows from the
numerical results presented, the void dynamics strongly depends on the thermodynamic properties of both
the entrapped gas and surrounding liquid. The results obtained with the new model demonstrate a good qual-
itative agreement with those observed in the experiments. However, to quantitatively predict the flow inside a
fiber bundle, the thermodynamics properties (such as the critical temperature and pressure, acentric factor,
and the binary interaction coefficients) of realistic resin systems and realistic volatile gases should be used.
Although the model presented here is an important step towards a better understanding of the physical phe-
nomena associated with the void formation at the intra-tow scale, further development of models for the cou-
pled simulation of the macro–micro flow including the multidimensional, thermal, and cure effects is required.
The development of this full-scale model is the focus of ongoing work.
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